B.Sc. Maximilian Li
- maximilian li ∂ student kit edu
Karlsruhe Institute of Technology (KIT)
Institute of Information Systems and Marketing (IISM)
Kaiserstraße 89
76133 Karlsruhe
Research Interests
- Artificial Intelligence & Machine Learning
- Physiological Computing & Physiolytics
Short CV
- Since 2020: Associated Researcher at the Institute of Information Systems and Marketing, Karlsruhe Institute of Technology.
- Since 2018: Master of Science Student in Computer Science at the Karlsruhe Institute of Technology
- 2018-2020: Junior Researcher at the Institute of Information Systems and Marketing, Karlsruhe Institute of Technology.
- 2017-2018: International Study Year at Tongj University, Shanghai (China)
- 2013-2018: Bachelor of Science in Computer Science at the Technical University Darmstadt
Publications
Conference Papers
-
Flow in knowledge work groups - Autonomy as a driver or digitally mediated communication as a limiting factor?
Knierim, M. T.; Nadj, M.; Li, M. X.; Weinhardt, C.
2020. 40th International Conference on Information Systems (ICIS 2019), München, 15.-18. Dezember 2019, AIS eLibrary (AISeL) -
Flow in Knowledge Work Groups – Autonomy as a Driver or Digitally Mediated Communication as a Limiting Factor?
Knierim, M. T.; Nadj, M.; Li, M. X.; Weinhardt, C.
2019. ICIS 2019, Munich, Germany, December 15-18, 2019, 1–17, AIS eLibrary (AISeL) -
Got Flow? Using Machine Learning on Physiological Data to Classify Flow
Rissler, R.; Nadj, M.; Li, M. X.; Knierim, M. T.; Maedche, A.
2018. Proceedings of the Conference on Human Factors in Computing Systems (CHI), Montréal, Canada, 21st - 26th April 2018, Art.Nr. LBW612, Association for Computing Machinery (ACM). doi:10.1145/3170427.3188480
Journal Articles
-
What Disrupts Flow in Office Work? The Impact of Frequency and Relevance of IT-Mediated Interruptions
Nadj, M.; Rissler, R.; Adam, M. T. P.; Knierim, M. T.; Li, M. X.; Maedche, A.; Riedl, R.
2023. MIS quarterly, 47 (4), 1615–1646 -
Towards a Physiological Computing Infrastructure for Researching Students’ Flow in Remote Learning – Preliminary Results from a Field Study
Li, M. X.; Nadj, M.; Maedche, A.; Ifenthaler, D.; Wöhler, J.
2022. Technology, knowledge and learning, 27, 365–384. doi:10.1007/s10758-021-09569-4 -
To Be or Not to Be in Flow at Work: Physiological Classification of Flow using Machine Learning
Rissler, R.; Nadj, M.; Li, M. X.; Loewe, N.; Knierim, M. T.; Maedche, A.
2020. IEEE transactions on affective computing, 14 (1), 463–474. doi:10.1109/TAFFC.2020.3045269 -
Power to the Oracle? Design Principles for Interactive Labeling Systems in Machine Learning
Nadj, M.; Knaeble, M.; Li, M. X.; Maedche, A.
2020. Künstliche Intelligenz, 34, 131–142. doi:10.1007/s13218-020-00634-1